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Visual attention is an essential mechanism of an intelligent robot to avoid processing an enormous
amount of data. Existing research typically specifies in advance the attention control scheme required for
a given robot to perform a specific task. However, a robot should be able to adapt its own attention control
for varied tasks and environments. In our previous work, we proposed a method for a mobile robot to
generate a filter to extract an image feature by visuo-motor learning. The generated image feature extractor
is considered to be generalized knowledge from which a kind of image feature should be extracted for
the robot to accomplish a task of a certain class. In this paper, we propose an attention mechanism,
by which the robot selects the generated feature extractors based on its task-oriented criterion. A subset
of supervised data which gives the local information of the task makes the selective mechanism more
effective. We discuss the results of applying the method to indoor navigation and soccer shooting tasks.
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1. Introduction

Attention control is an essential mechanism for an
intelligent robot to avoid processing an enormous amount
of data. It is a data reduction process to facilitate decision
making.With regard to visual attention control, it involves
selection of viewpoint, focus, image features, and so on.
Existing research typically specifies in advance the atten-
tion control scheme required for a given robot to perform a
specific task. However, a robot should be able to adapt its
own attention control for varied tasks and environments.

Human beings have very highly developed mecha-
nisms of attention. Much research focused on early visual
processing and proposed a computational model in which
a bottom-up system computes low-level image features
and saliency maps and a top-down system selects the
salient parts (e.g., [1]). Some computer vision researchers
proposed a viewpoint selection method to facilitate object
recognition based on information gain (e.g., [2]). The
mechanisms are intended to obtain a better observation
for object recognition, but are not directly related to the
physical actions needed to accomplish a given task.

Some robot researcher focused on the attention prob-
lem of robot vision. Vlassis et al. [3] extracted image
features correlated with a mobile robot’s self-localization
from the observed images based on a probabilistic method.
Kröse and Bunschoten [4] proposed a method to decide the
robot’s camera direction by maximizing information gain.
Winters and Santos-Victor [5] proposed a method to extract
pixels correlated with a robot’s localization. These methods
are considered to be task-relevant visual attention but are
not related to any physical actions.

We have focused on visual attention control related
to a robot actions to accomplish a given task and proposed
a method in which a robot generates an image feature
extractor (i.e., image filter) which is needed for the se-
lection of actions through visuo-motor map learning [6].
The robot’s learning depends on the experience gathered
while performing a task. The robot’s state is calculated
in two stages. First the image feature is extracted from
the local area of the observed image, and then the state
is calculated from the entire area of the feature image.
Consequently, a generalized feature extractor is generated
because it works much like a bottleneck layer of neural
network in the state calculation process. In this model, the
robot uses only one feature extractor for a given task. It
is, however, obvious that the robot needs to select and use
multiple feature extractors properly to accomplish various
tasks.

A number of connectionist models have been pro-
posed that constitute systems that selectively respond to
visual stimuli. Scheier and Egner [7] proposed a system
that selectively connects image feature maps with robot’s
actions according to saliency. The connection is given a
priori and has less adaptability. A simulated nervous system
was proposed that learns the connection based on the co-
occurrence between sensor activities of NOMAD [8]. In
this system, the robot follows its innate preference and,
therefore, cannot learn any given task.

Some research has addressed a method of feature
selection based on task-relevant criteria. McCallum [9]
proposed a method in which a robot learns not only its
action but feature selection using reinforcement learning.
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Fig. 1. Image feature generation model

Mitsunaga and Asada [10] proposed a method to select
a landmark according to the information gain on action
selection. In these methods, however, the image features
to detect the landmarks from the observed image is given
a priori. It is desirable that the image feature adapts to
environmental changes.

This paper proposes a method in which a robot
learns to select image feature extractors generated by
itself according to a task-relevant criterion. The generated
feature extractors are not always suitable for new tasks,
though they are generalized. The robot must learn to select
them to accomplish the task. The criterion of selection is
the information gain calculated from given task instances
(supervised data). Furthermore, a part of supervised data
which gives the local information of the task makes the
selective mechanism more effective. The method is applied
to indoor navigation and soccer shooting tasks.

2. The basic idea

Image feature extraction is necessary in a robot’s
visual attention and as well as in human visual processing,
consists of a low-level feature extraction process and a
high-level recognition process. In the proposed method, a
robot generates an image feature extractor that is necessary
for the action selection through visuo-motor map learning
[6] as shown in Fig. 1. The state calculation process is
decomposed into feature extraction and state extraction.
A robot learns the effective feature extractor and state
mapping matrix for a given task through a mapping from
observed images to supervised actions. During feature
extraction, the interactions between raw data are limited
to local areas, while the connections between the filtered
image and the state spread over the entire space to represent
non-local interactions. We, therefore, expect that the feature
extractors are more general.

The robot calculates the filtered imageIf from the
observed imageIo using the feature extractorF . To avoid
thecurse of dimensionality, the size ofIf is reduced toIc.
The states is calculated fromIc by the sum of weighted
pixel values (the weight matrix isW ). The robot decides
the appropriate action for the current states. The function
model of the feature extractor is given, and the robot learns
its parameters and the mapping matrix by maximizing the
information gain ofs with respect to actiona.
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Fig. 2. Image feature selection model

The robot, which generates one feature extractor for
a given task, obviously needs multiple feature extractors
for more complex tasks. It is unnecessary to learn a
feature extractor for every given task. The generated feature
extractor must be generalized to make the robot more
adaptable.

In the proposed method, the robot reuses a number
of generated feature extractors from past experiences and
selects effective ones for action decision. The system is
shown in Fig. 2. The robot is given a number of dif-
ferent feature extractors, but must select which extractors
are effective for given task. The robot, therefore, learns
the state mapping matrix using the supervised data and
evaluates which feature extractor is appropriate from the
distribution of supervised data on the learned state space.
If the robot uses all of the supervised data in the evaluation,
optimality in a local part of the task is lost. To evaluate the
effectiveness in the local task, the robot estimates which
local task it is performing from the history of observations
and selects the feature extractor using a portion of the
supervised data corresponding to the local task.

3. Selective attention mechanism based on gener-
ated image feature extractors

3.1 The system overview

The robot is givenn different feature extractors
(Fi, i = 1 . . . n) and calculates the substatesi using the
mapping matrixWi corresponding toFi. Each mapping
matrix is learned by maximizing the information gain ofsE

(direct product ofs1 . . . sn) with respect to the supervised
actiona.

The robot selects the feature extractor which has
a maximum expected information gain and decides the
appropriate action for the substate calculated using the
selected feature extractor. It cannot always decide the
appropriate action using one feature extractor. It, therefore,
estimates the reliability of selected feature extractors and



selects repeatedly until the reliability exceeds a given
threshold.

For evaluation in the local task, the supervised data
is segmented in temporal order. The robot selects a sub-
supervised data according to the history of observation
and selects feature extractors to decide an action using the
selected one.

3.2 The model of feature extractor

In this paper, three feature extractor models are used.

• 3× 3 spatial filterFs，the parameterfs ∈ <9 :

Īx,y = fs1Ix−1,y−1+fs2Ix,y−1 +fs3Ix+1,y−1

+fs4Ix−1,y +fs5Ix,y +fs6Ix+1,y

+fs7Ix−1,y+1 +fs8Ix,y+1 +fs9Ix+1,y+1,
(1)

Ifx,y = g
(
Īx,y

)
. (2)

• Color filter Fc，the parameterf c ∈ <3 :

Īx,y = fc1Ir x,y + fc2Ig x,y + fc3Ib x,y, (3)

Ifx,y = g
(
Īx,y

)
, (4)

• Temporal filterFm，the parameterfm ∈ <5 :

Īx,y =
5∑

i=1

fmiIt−i+1 x,y, (5)

Ifx,y = g
(
Īx,y

)
, (6)

wherex andy denote the position of the pixel,I, Ir, Ig, Ib;
the gray, red, green and blue components of the observed
image, respectively,It, the gray component of the observed
image at timet, andg(·), a sigmoid function.

3.3 State learning

First the robot collects supervised successful in-
stances of the given task forT episodes. An episode ends
when the robot accomplishes the task. An instance consists
of the observed imageIo and a given actiona ∈ <l. An
instance ofith episode at timet is shown as following:

ui
t =< Ii

ot, a
i
t > . (7)

Next the robot learns the mapping matrices. The
substatesi ∈ <m is calculated as following:

sj = g (Wjicj) ,

g(x) = (g(x1), . . . , g(xm))T , (8)

whereicj ∈ <mcxncy denotes the vector of thejth Icj , and
Wj ∈ <m×ncxncy is the jth mapping matrix.

The evaluation function used to learnWj is to
maximize the information gain ofsE with respect toa.
It is equivalent to minimizing the following risk function
R (e.g., [3]).

R = − 1
N

N∑

i

log p(ai|sEi), (9)

whereN denotes the number of instances. The probability
density functions are represented by kernel smoothing.
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Fig. 3. Segmentation of supervised data

Using the gradient method, the mapping matricesWj ,
which minimizeR, are obtained.

Wj ← Wj − α
∂R

∂Wj
, (10)

whereα is a step size parameter.

3.4 Feature extractor selection

All instances ofU are divided intor subsetsUj , j =
1 . . . r before performing the task (Fig. 3). The subsets are
arranged in time order. The choice ofr includes a trade-
off between a locality of the evaluation and a reliability
of the action decision. To evaluate it,U is divided so
that instances of similar state and action are included in a
subset. The following vectorci

t is defined from the instance
ui

t, andU is divided by applying the ISODATA algorithm
for the set{ci

t}.

ci
t =

(
si

Et, a
i
t,

t

Li

)
, (11)

where Li is the time taken to accomplish the task. The
value of each component is normalized to [0,1]. To avoid
an aliasing problem, the robot always uses the two neigh-
boring subsets to evaluate the effectiveness of a feature
extractor.

The robot executes the following process at every
interval.

1) Selecting subsets of instance;
Select subsets of instanceU according to a procedure
shown in the next section.k = 0.

2) Calculating a reliability of action decision;
Calculate substatesso1, . . . , sok corresponding to the
selectedk(≥ 0) feature extractors and the entropy of
the actionHU (a|So) using the instances inU .

HU (a|So) = −
∑

PU (a|So) log PU (a|So), (12)

where So = {so1, . . . , sok}. HU (a|So) means an
uncertainty of the action decision. Evaluate the un-
certainty using a thresholdHth.
• If HU (a|So) ≤ Hth, then go to 4.
• Otherwise, ifk = n andU = U , then go to 4.
• Otherwise, ifk = n andU 6= U , then go to 1

with U = U .
• Otherwise, go to 3.

3) Selecting a feature extractor;



Calculate an expected entropy of the action for
each unselected feature extractorFu. The expected
entropy is:

∑

U
PU (su)HU (a|So, su), (13)

wheresu is a substate corresponding toFu. Select
the feature extractor which has the minimum entropy,
that is, has the maximum information gain.k ← k+
1. go to 2.

4) Deciding an action;
Execute the following actiona:

a = arg max
a′

PU (a′|So). (14)

3.5 Selecting subsets of instance

The robot selects subsets of instanceU which are
used to calculate a probability and an entropy according to
the statesSot−1, . . . , Sot−h observed in the pasth steps.
Each Sot consists of a number of substates. The size of
Sot is differs depending ont, because the number of the
selected feature extractors is different.

For each subsetUi the robot calculates a matching
ratio,Pbi, thatSot satisfies Eq. 15 inh substates. If the ratio
is greater than a thresholdPbth, Ui andUi+1 are added to
U . Ui+1 is the successor ofUi. If there is noPbi which is
greater thanPbth, the robot uses all instances (U = U ).

PUi(Sot) > 0. (15)

4. Experiment

4.1 Experimental setting

We use a small mobile robot which is about 40 cm
high and has a camera with a fixed orientation to look
ahead at the floor. The task is to move along a given path
to a destination. The size ofIo andIf in pixels is64× 54
and that ofIc is 8× 6. The robot is controlled at the rate
of 15 Hz. Each pixel value ofIc is the average value of
the corresponding region inIf . We defined the dimension
of substate asm = 1.

The robot can move at a translational speedv and
a steering speedω independently, so the action vector is
represented as follows:

a = (v, ω)T
. (16)

To reduce the computation cost, we discretized the
state and action space and calculated the probabilities. The
thresholds are set asHth = 0.4 andPbth = 0.8.

4.2 Feature extractors

We prepared four feature extractors shown in Fig.
4. Fs, Fc1, Fc2, Fm are generated in tasks A, B, C, and D
(Fig. 5), respectively. The environment of task A, B, and
C is a corridor in a laboratory and that of task D is a field
of robot soccer.

The feature extractors have the following character-
istics.
• Fs: Emphasizing and inhibiting horizontal edge
• Fc1: Inhibiting red

Spatial filter Fs Color filter Fc1

Temporal filter Fm Color filter Fc2redwhite

white yellow

green

white
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red

grayObserved image Filtered image

Fig. 4. Feature extractors
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Fig. 5. Tasks in which the robot learned feature extractors

• Fc2: Emphasizing red and yellow, and inhibiting white
• Fm: Emphasizing current image and inhibiting past

image

4.3 Feature extractor selection

The robot was givenFs, Fc1, Fm and learned task 1
shown in Fig. 6. The robot moves to the front of the door
and waits for it to open. It moves to the destination after
the door opens. The environment is same as that of tasks A,
B, and C. We gave three episodes of successful instances
(L = 234, 254, 233). After learning, the robot divided all
instances into 13 subsets. We set the history lengthh = 10.

Fig. 7 shows the learned behavior and Fig. 8 shows
the selected feature extractors at each time step. The
selected feature extractors, their number, and their order
change according to the situation. The average number per
step is 1.57.

Fig. 9 shows the selected subsets of instances at
each step. When the robot cannot choose an action from

sign

robot wait for open

goal

Fig. 6. Task 1
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the selected subsets because of low reliability, it uses all
instances to decide again.U in the figure shows the step
when the robot can choose an action from the selected
subsets. If the robot chooses an action with few feature
extractors in the past, many subsets of instance are used
because the number of subset satisfies Eq.15 increases.
We verify that the robot accomplishes the task selecting
effective feature extractors.

4.4 Verification of subset of instance

To verify the subset of instances, we performed an
experiment which was the same as Sec. 4.3 except the
procedure to select the subsets. In this experiment, the robot
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Fig. 12. Selected feature extractors (Task 2)

always selects all instances. Fig. 10 shows the selected
feature extractors at each step. The feature extractor that
the robot selects first does not change. In this result,Fc1 is
always selected at first. The average number of the selected
feature extractors per step is 1.97, which is larger than the
result of Sec.4.3. This means that using all instances brings
about inefficient selection for the action decision. Hence,
the robot effectively decides the action using part of the
instances.

4.5 Reuse of feature extractors

In the above, it has been shown that the robot can
accomplish new tasks with feature extractors generated in
the past tasks. This section shows that a generated feature
extractor can be reused in new environment.

The robot was givenFs, Fc2, Fm, and learned task
2 shown in Fig. 11 (a). The environment was same as
that of task A, B, and C, however,Fc2 was generated
in the different environment. We gave three episodes of
successful instances (L = 132, 131, 134). The number of
the subset was 7 and the history length,h, was 15.

Fig.11 (b) shows the learned behavior and Fig. 12
shows the selected feature extractors at each time step. The
robot selectedFc2 at first in some situations. This indicates
that Fc2 is effective for this task. Hence, the generated
feature extractor can be used in different environment and
task.

4.6 Irrelevant feature extractor

Contrary to the previous section, this section shows
that the robot can neglect the irrelevant feature extractor
to the task. The robot was givenFs, Fc1, Fc2, and learned
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task 3 shown in Fig. 13 (a). The environment was same
as that of task 3 except the goal. We gave two episodes of
successful instances (L = 143, 153). The number of subset
was 6 and history length,h, was 15.

Fig. 13 (b) shows the learned behavior and Fig. 14
shows the selected feature extractors at each time step.
The importance ofFc2 is low because the robot rarely
selected it. It can also be seen from the distribution of
the instances. Fig. 15 (a) shows the distribution of all
instances on the learned state space.s1, s2, s3 are the
substates ofFs, Fc2, Fc1, respectively. Fig.15 (b) shows
the s1–s2 plane. The value of states2 is irrelevant to
identifying the state because the instances do not distribute
along the axis ofs2. This means thatFc2 is irrelevant to
the action decision.Fc2 emphasizes red and yellow, and
inhibits white. It is, however, useless to identify the state in
the environment. Hence, the robot can neglect an irrelevant
feature extractor.

5. Conclusion

This paper has proposed a method in which a robot
learns to select image feature extractors generated by itself
according to task-relevant criterion. A portion of supervised
data which gives the local information of the task makes
the selection of feature extractors more effective.

In the proposed method, a robot can accomplish
more complicated tasks using multiple feature extractors.
This paper, however, does not mention a method to gener-
alize a feature extractor. This must be considered in order
to increase the robot’s adaptability.
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